Water wave packets over variable depth

نویسنده

  • R. H. J. Grimshaw
چکیده

In this paper we develop a higher-order nonlinear Schrodinger equation with variable coefficients to describe how a water wave packet will deform and eventually be destroyed as it propagates shoreward from deep to shallow water. It is well-known that in the framework of the usual nonlinear Schrodinger equation, a wave packet can only exist in deep water, more precisely when kh > 1.363 where k is the wavenumber and h is the depth. Using a combination of asymptotic analysis and numerical simulations we find that in the framework of the higher-order nonlinear Schrodinger equation, the wave packet can penetrate into shallow water kh < 1.363 or not even reach kh > 1.363, depending on the sign of the initial value in deep water of certain parameter of the wave packet which measures its speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.

Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...

متن کامل

EFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR ‎‎E‎VOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER

Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...

متن کامل

Nonlinear mechanism of tsunami wave generation by atmospheric disturbances

The problem of tsunami wave generation by variable meteo-conditions is discussed. The simplified linear and nonlinear shallow water models are derived, and their analytical solutions for a basin of constant depth are discussed. The shallow-water model describes well the properties of the generated tsunami waves for all regimes, except the resonance case. The nonlinear-dispersive model based on ...

متن کامل

Justification of the Nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth

In 1968 V.E. Zakharov derived the Nonlinear Schrödinger equation for the 2D water wave problem in the absence of surface tension, i.e., for the evolution of gravity driven surface water waves, in order to describe slow temporal and spatial modulations of a spatially and temporarily oscillating wave packet. In this paper we give a rigorous proof that the wave packets in the two-dimensional water...

متن کامل

Improved Estimates of Kinematic Wave Parameters for Circular Channels

The momentum equation in the kinematic wave model is a power-law equation with two parameters. These parameters, which relate the discharge to the flow area, are commonly derived using Manning’s equation. In general, the values of these parameters depend on the flow depth except for some special cross sections. In this paper, improved estimates of the kinematic wave parameters for circular chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010